

E2E Automated Vulnerability Research

Andrea Continella University of Twente SCS group

14/06/2023

AVR Lifecycle

Black-box Fuzzing for IoT Devices

Smarter Black-box Fuzzing

Fuzzing IoT Devices ©

Fuzzing IoT Devices ©

Fuzzing IoT Devices ©

Results & Outcomes

		DIANE				IoTFuzzer		
Device ID	No. Generated Alerts	No. Bugs	Zero-day	Vuln. Type	Time [hours] (No. Generated Inputs)	No. Fuzzed Functions	No. Bugs	Time [hours]
1	1	1	1	Unknown	$\leq 0.5 (60,750)$	• 1	0	N/A
2	3	7	1	Buff overflow	$\leq 0.5 (322)$	5	2	0.98
3	1	1		Unknown	$\leq 1.2 (7,344)$	1	1	4
4	1	0		N/A	N/A	• 1	0	N/A
5	1	0		N/A	N/A	• 1	0	N/A
6	4	1		Unknown	$\leq 10 (34,680)$	1	1	≤ 10
7	3	0		N/A	N/A	N/A	N/A	N/A
8	3	0		N/A	N/A	N/A	N/A	N/A
9	0	0		N/A	N/A	3	0	N/A
10	1	0		N/A	N/A	N/A	N/A	N/A
11	0	†1	1	Unknown	2.2 (3,960)	N/A	N/A	N/A

DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for IoT Devices In Procs. of the IEEE Symposium on Security & Privacy (S&P), 2021

Google Titan M Chip

External Coprocessor: Trusted Execution Environment (TEE)

Secure World Non-Secure World Untrusted Trusted Untrusted Untrusted Trusted Trusted Арр Арр App Арр Арр Арр Rich 05 Trusted 05 Protected hardware Hardware resources

Results & Outcomes

Table 1: Results of fuzzing the Titan M firmware, version 0.0.3/brick_v0.0.8232-b1e3ea340

Task	Command	Bug	Detection	Return code	Avg.	# of mess	iges
Identity	ICPushReaderCert	Buffer overflow	Chip reboots	2		74	
Identity	ICsetAuthToken	Buffer overflow	Stack canary	2		475	
Identity	WICaddAccessControlProfile	Null-pointer dereference	Chip halts	4		57	
Identity	WICbeginAddEntry	Null-pointer dereference	Chip halts	4		99	
Identity	WICfinishAddingEntries	Null-pointer dereference	Chip halts	4		82	
Identity	ICstartRetrieveEntryValue	Null-pointer dereference	Chip halts	4		105	
Keymaster	FinishAttestKey	N/A	Chip reboots	2		257	
Keymaster	IdentityFinishAttestKey	N/A	Chip reboots	2		192	

Table 2: Results of fuzzing the Titan M firmware, version 0.0.3/brick_v0.0.8292-b3875afe2

Task	Command	Bug	Detection	Return code	Avg. # of messages
Identity	WICfinishAddingEntries	Null-pointer dereference	Chip halts	4	72
Identity	ICstartRetrieveEntryValue	Null-pointer dereference	Chip halts	4	126

Reversing and Fuzzing the Google Titan M Chip In Procs. of the Reversing and Offensive-oriented Trends Symposium (ROOTS), 2021

Fuzzing Android Apps

Columbus: Fuzzing Android Apps

Results & Outcomes

Columbus has 5% - 31% more in average coverage than existing tools

Discovers 1.23 - 5.48 times more crashes

Columbus found **70 crashes** in 54 popular apps

COLUMBUS: Android App Testing Through Systematic Callback Exploration Procs. of the International Conference on Software Engineering (ICSE), 2023.

AVR Lifecycle

Interleaved Symbolic Execution

ML-guided Symbolic Execution

Train a classifier to select the branch path more likely to lead to vulnerabilities

SyML reaches both more and different vulnerabilities on CGC dataset

Successful on 3 real-world Linux CVEs, knowledge transfer

SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning Procs. of the International Symposium on Research in Attacks, Intrusions and Defenses (RAID), 2021.

Divak: Characterizing OOB writes

Non-invasive approach && detect intra-object OOBs

Divak: Non-invasive Characterization of Out-Of-Bounds Write Vulnerabilities Conference on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA), 2023.

AVR Lifecycle

Patching Monolithic Firmware

Creating a Patch

What's the input? No standard sources of input, numerous hardware peripherals

Inserting a Patch

Where? We cannot simply inject & shift && we have space issues

Deploying a Patch

How? Verification mechanism to preserve integrity

Retrofitting Monolithic Firmware

Retrofitting Monolithic Firmware

Retrofitting Monolithic Firmware

Coordinated Vulnerability Disclosure

We established a university-wide policy on coordinated vulnerability disclosure

- Clear to researchers & students how to behave (+ guidelines)
- Leverage in demanding that researchers follow these procedures
- Provides researchers with assurance that they will be protected
- Clear to recipients of disclosure notices how we handle the process

Operationalizing Cybersecurity Research Ethics Review: From Principles and Guidelines to Practice Procs. of the International Workshop on Ethics in Computer Security (EthiCS), 2023.

What's next?

Thanks! Questions?

Andrea Continella

<a.continella@utwente.nl> <u>https://conand.me</u> © @_conand